Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 50(10): 1061-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15893332

RESUMO

The introduced green alga Caulerpa racemosa var. cylindracea has been rapidly spreading in the Mediterranean Sea since 1990. It was first observed in France in 1997 (Marseilles). In early 2004, the stretch of the French Mediterranean coastline and the surface area affected by the invasion were estimated at about 83 km and 4014 ha, respectively. The depth range of colonized areas was usually 10-35 m depth. Shallow (0-10 m) and deep (down to 40 m) dense meadows were rarely observed. In contrast to the dead matte of Posidonia oceanica, which constituted the most widely colonized substratum, dense P. oceanica meadows and fine sand with large ripple-marks were not invaded. Few rocky areas were colonized and coarse sand bottoms were usually colonized below 20 m depth. All the colonized areas were exposed to human activities and more than 40% were fishing areas. Mild climate, suitable substrata, presence of vectors of dispersal and absence of efficient biological control make the French Mediterranean coast particularly vulnerable to the further spread of the alga.


Assuntos
Caulerpa/crescimento & desenvolvimento , Demografia , Clima , França , Geografia , Mar Mediterrâneo , Dinâmica Populacional , Estações do Ano
2.
J Chem Ecol ; 28(10): 2091-105, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12474902

RESUMO

The invasive green alga, Caulerpa taxifolia, that has spread rapidly after its introduction into the Mediterranean and the North American Pacific, reacts to wounding by transforming its major metabolite caulerpenyne. This wound-activated reaction involves the transformation of the bis-enol acetate moiety of 1, releasing reactive 1,4-dialdehydes. The ability to perform this transformation is found also in both the noninvasive Mediterranean C. prolifera and the invasive C. racemosa. Trapping experiments, as well as transformation of the model substrate geranyl acetate, suggest that all three investigated Caulerpa spp. rely on esterases that act upon wounding of the algae by subsequently removing the three acetate residues of caulerpenyne. The resulting reactive 1,4-dialdehyde oxytoxin 2 can be identified by liquid chromatography-mass spectrometry and is unstable in the wounded tissue. Caulerpenyne transformation occurs rapidly, and severe tissue damage caused degradation of more than 50% of the stored caulerpenyne within 1 min in all three algae. Prevention of the enzymatic reaction before extraction, by shock freezing the tissue with liquid nitrogen, was used for the determination of the caulerpenyne content in intact algae. It gives about twofold higher values compared to an established methanol extraction protocol. The speed and mechanism of the wound-activated transformation, as well as the caulerpenyne content in intact tissue of invasive and noninvasive Caulerpa spp., are comparable. Thus, this enzymatic transformation, despite being fast and efficient, is likely not the key for the success of the investigated invasive species.


Assuntos
Clorófitas/fisiologia , Sesquiterpenos/metabolismo , Adaptação Fisiológica , Clorófitas/patogenicidade , Esterases/farmacologia , Toxinas Marinhas/metabolismo , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...